Emmy Noether, Symmetry, and Women in Mathematics

Cheryl E Praeger

Centre for the Mathematics of Symmetry and Computation

LMS-IMA Joint Meeting, London, September 2018

Noether
Celebration

Emmy Noether's amazing contributions to algebra

Nathan Jacobson [edited collected papers of Emmy Noether]

Development of modern abstract algebra is largely due to Emmy Noether

- "One of the most distinctive innovations of $20^{\text {th }}$ century mathematics"
- Through published papers, lectures, personal influence
- Contributions so thoroughly absorbed into math culture
- That they are rarely specifically attributed to her

Ideal Theory in Rings

Idealtheorie in Ringbereichen Math. Annalen 83 (1921), 24-66

- Of fundamental importance in the development of modern algebra
- New concepts - new framework for studying "rings"
- Decomposition/factorisation theorems - general (appropriate) context
- So fundamental, some of her ideas rediscovered by others
- Name given to various algebraic structures: notably
- Noetherian rings

Rings

Examples: Integers Z [positive and negative]

Characteristics (axioms) of a ring R

- Addition and multiplication possible
- R contains zero 0 and each element a has a negative -a so $a+(-a)=0$
- Parentheses often not needed:

$$
\text { - }(\mathrm{a}+\mathrm{b})+\mathrm{c}=\mathrm{a}+(\mathrm{b}+\mathrm{c}) \text { and (a.b) } \cdot \mathrm{c}=\mathrm{a} \cdot(\mathrm{~b} \cdot \mathrm{c})
$$

- Distributive rule: $(a+b) . c=a . c+b \cdot c$
- Emmy Noether's rings were commutative: $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$ and $\mathrm{a} \cdot \mathrm{b}=\mathrm{b} \cdot \mathrm{a}$

As well as Z: many rings had been studied

Not every ring contains a "1" e.g. $2 Z=\{2 x \mid x \in Z\}$

- Ring of Gaussian integers a+bi with \mathbf{a}, b in \mathbf{Z}
- Polynomial rings $R[x]$ with coefficients in a ring R

Emmy Noether's aim in her 1921 paper

To convert known "decomposition theorems"

- for Z or algebraic integers like $Z[i]$, or polynomial rings $Z[x]$ into theorems for "ideals" in arbitrary "integral domains" (or rings in general)
- Analogue of prime-power decomposition of integers
- $a=p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{s}^{r_{s}}=q_{1} q_{2} \ldots q_{s} \quad$ Example: $60=2^{2} 3^{1} 5^{1}=4 \cdot 3 \cdot 5$
- Think of q_{i} as "components" of the decomposition
- We know: for integers decomposition "essentially unique" - number s, the primes p_{i}, the exponents r_{i}
- Only issue is "-1" - discuss later
- Similar unique decomposition results for some rings of algebraic integers and polynomial rings.

Emmy Noether: introduced general properties - which could be interpreted in all these contexts and others - to get a general decomposition theorem whenever these properties held

Some "characteristic properties"

Capture the idea of prime-power decomposition for integers

In a decomposition $a=q_{1} q_{2} \ldots q_{s}$

- Components q_{i} should be pairwise coprime and q_{i} not decomposable as product of pairwise coprime numbers (irreducible)
- Components q_{i} should be primary

```
E.g. 60 = 6 x 10
Or 60=2\times2\times3\times5
Not allowed
```

- If q_{i} divides $b c$ but not b then q_{i} divides some power of c
- And two more properties ...

$$
\begin{aligned}
& \text { E.g. } 60=4 \times 3 \times 5 \\
& \text { Component } 4 \text { is primary } \\
& \text { Since if } 4 \text { divides } b . c \text { but not } b, \\
& \text { Then } c \text { even, so } 4 \text { divides } c^{2}
\end{aligned}
$$

- Properties formulated to apply to any ring:
- " q divides b " means $b=q c$ for some c

Ideals: to deal with the "uncertainty" caused by "-1"

Ideal N in a ring R

Definition: N subset of R such that

- If N contains b then N also contains $a . b$ for arbitrary a in N
- If N contains b and c then N also contains $b-c$

$$
\begin{aligned}
& \text { E.g. } \mathrm{N}=60 Z=\{60 x \mid x \in Z\} \\
& \text { Is an ideal of } Z
\end{aligned}
$$

Transfers language

- If N contains b then say b divisible by N
E.g. $60 Z$ is contained in $12 Z$

So $60 Z$ is divisible by $12 Z$

- If M is an ideal contained in N , then say M divisible by N

Definition: N is finitely generated by subset $B=\left\{b_{1}, \ldots, b_{s}\right\}$

- if each a in N can be written as $a=a_{1} b_{1}+\cdots+a_{s} b_{s}+n_{1} b_{1}+\cdots+n_{s} b_{s}$
- [this is modern language: Emmy Noether calls B an "ideal basis" for N]

Ideals: to deal with the "uncertainty" caused by "-1"

Ideal N in a ring R

Definition: N subset of R such that

- If N contains b then N also contains $a . b$ for arbitrary a in N
- If N contains b and c then N also contains $b-c$

Transfers language

- If N contains b then say b divisible by N

$$
\text { E.g. } \mathrm{N}=60 Z=\{60 x \mid x \in Z\}
$$

$$
\text { Is an ideal of } Z
$$

E.g. $60 Z$ is contained in $12 Z$

So $60 Z$ is "divisible by" $12 Z$

- If M is an ideal contained in N , then say M divisible by N

Definition: N is finitely generated by subset $B=\left\{b_{1}, \ldots, b_{s}\right\}$

- if each a in N can be written as $a=a_{1} b_{1}+\cdots+a_{s} b_{s}+n_{1} b_{1}+\cdots+n_{s} b_{s}$

Finite Chain Theorem: If every ideal is finitely generated, then each infinite ascending chain of ideals terminates after a finite number of steps.

Ideals: to deal with the "uncertainty" caused by "-1"

Finite Chain Theorem: If every ideal is finitely generated, then for a countably infinite sequence of ideals such that

$$
N_{1} \subseteq N_{2} \subseteq \cdots \subseteq N_{r} \subseteq \cdots
$$

there exists an integer n such that $N_{n}=N_{n+1}=\cdots$.

Ideals: to deal with the "uncertainty" caused by "-1"

Finite Chain Theorem: If every ideal is finitely generated, then for a countably infinite sequence of ideals such that

$$
N_{1} \subseteq N_{2} \subseteq \cdots \subseteq N_{r} \subseteq \cdots
$$

there exists an integer n such that $N_{n}=N_{n+1}=\cdots$.
Why does it apply to the integers Z ?

- Each ideal M is equal to $\mathrm{M}=m Z=\{m x \mid x \in Z\}$ for some m
- Each ideal N containing M is $\mathrm{N}=n Z=\{n x \mid x \in Z\}$ for some n dividing m
- So M contained in only finitely many larger ideals

$$
\text { E.g. } 60 Z \subset 12 Z \subset 4 Z \subset 2 Z
$$

Ideals: to deal with the "uncertainty" caused by "-1"

Finite Chain Theorem: If every ideal is finitely generated, then for a countably infinite sequence of ideals such that

$$
N_{1} \subseteq N_{2} \subseteq \cdots \subseteq N_{r} \subseteq \cdots
$$

there exists an integer n such that $N_{n}=N_{n+1}=\cdots$.
Why does it apply to the integers Z ?

- Each ideal M is equal to $\mathrm{M}=m Z=\{m x \mid x \in Z\}$ for some m

- Each ideal N containing M is $\mathrm{N}=n Z=\{n x \mid x \in Z\}$ for some n dividing m
- So M contained in only finitely many larger ideals

$$
\text { E.g. } 60 Z \subset 12 Z \subset 4 Z \subset 2 Z
$$

Theorem was known previously for several special cases:

- Context of modules - Dedekind, [Supplement XI to "Zahlentheorie"]
- Polynomial rings - Lasker, 1905

Emmy Noether gives much wider-ranging applications of this theorem than previously for the special cases

Noetherian rings

Finite Chain Theorem: If every ideal is finitely generated, then for a countably infinite sequence of ideals such that

$$
N_{1} \subseteq N_{2} \subseteq \cdots \subseteq N_{r} \subseteq \cdots
$$

there exists an integer n such that $N_{n}=N_{n+1}=\cdots$.
Ascending chain condition (ACC)

- Each countably infinite ascending chain of ideals terminates after a finite number of steps.

ACC defined also on chains of left ideals and chains of right ideals in noncommutative rings

Definition: Ring is Noetherian if it has the ACC on left and right ideals
Next Noether's applications of Finite Chain Theorem: depend on Axim of Choice

Decompositions of ideals I

Least common multiple ℓ. c.m. $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ of ideals is the intersection $N_{1} \cap N_{2} \cap \cdots \cap N_{k}$

Example $60 Z=12 Z \cap 10 Z$ the ideals $12 Z, 10 Z$ the components of decomposition

Decompositions of ideals I

Least common multiple ℓ. c.m. $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ of ideals is the intersection $N_{1} \cap N_{2} \cap \cdots \cap N_{k}$

Example $60 Z=12 Z \cap 10 Z$ the ideals $12 Z, 10 Z$ the components of decomposition

Irreducible ideal: if N not the intersection (I.c.m.) of two larger ideals So $4 Z$ is irreducible (only larger ideal is $2 Z$)
But none of $60 Z=12 Z \cap 10 Z, 12 Z=4 Z \cap 3 Z$, or $10 Z=2 Z \cap 5 Z$ irreducible

Decompositions of ideals I

Least common multiple ℓ. c.m. $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$ of ideals is the intersection $N_{1} \cap N_{2} \cap \cdots \cap N_{k}$

Example $60 Z=12 Z \cap 10 Z$ the ideals $12 Z, 10 Z$ the components of decomposition

Irreducible ideal: if N not the intersection (I.c.m.) of two larger ideals So $4 Z$ is irreducible (only larger ideal is $2 Z$)
But none of $60 Z=12 Z \cap 10 Z, 12 Z=4 Z \cap 3 Z$, or $10 Z=2 Z \cap 5 Z$ irreducible

Emmy's next theorem: [Theorem II]
Every ideal is an intersection of finitely many irreducible ideals

What about uniqueness?

Always assuming: all ideals finitely generated

Analogue of: every integer is a product of finitely many prime-powers

Decompositions of ideals II

Suppose ideal $\mathrm{N}=N_{1} \cap N_{2} \cap \cdots \cap N_{k}$ with the N_{i} irreducible

Shortest decomposition: cannot omit any component, that is, No N_{i} contains the intersection of the remaining ideals

Example: $60 Z=4 Z \cap 3 Z \cap 2 Z \cap 5 Z$ not shortest since $60 Z=4 Z \cap 3 Z \cap 5 Z \subset 2 Z$

NICE decomposition: $\mathrm{N}=N_{1} \cap N_{2} \cap \cdots \cap N_{k}$ if "shortest" and all N_{i} irreducible

Emmy's next theorem: [Theorem IV]
Any two NICE decompositions of an ideal have same number of components

Decompositions of ideals III

Primary and prime ideals: two definitions (products of elements and products of ideals) - shows equivalent

- Primary ideals contained in unique prime ideal [Theorem V]
- Irreducible ideals are primary [Theorem VI]
- Hence in NICE decomposition $\mathrm{N}=N_{1} \cap N_{2} \cap \cdots \cap N_{k}$ each N_{i} contained in unique prime ideal P_{i}

Emmy's next theorem: [Theorem VII]
Any two NICE decompositions involve exactly the same set of prime ideals

- Some information "exponents" but not uniqueness [Theorem VII]
- 11 pages [and five Theorems] refining the structure

Study of modules

Section 9: Precursor of Emmy Noether's work on Group Rings

Involves

- Extension of theory to non-commutative rings

Modules are like vector spaces, but the scalars come from a ring (not necessarily a field)

- Introduces concept of sub-module
- Assuming that each submodule is finitely generated, obtains structural results which "lay the foundations for uniqueness theorems"
Later work
- 1927 Noether (her letter to Brauer)
- "I am very glad that you have now realized the connection between representation theory and the theory of noncommutative rings ..."
- 1929 Noether [Math.Z.]
- Roquet: "Her great paper on representation theory and group rings"
- 1932 [J Reine und Angew. Math.] Brauer--Hasse--Noether Theorem on division algebras over number fields
- Weyl: "a high watermark in the history of algebra"

Final applications

Section 10: Connection of her theorems with known work on polynomial rings Section 11: Examples from Number Theory
Section 12: Example from "elementary divisor theory" - matrix algebras

It is an extraordinary paper

Hermann Weyl

Her influence is not just in her papers

Hermann Weyl:
"she had great stimulating power and many of her suggestions took shape only in the works of her pupils and co-workers."

Albert Einstein May 1, 1935 - New York Times

Obituary: describes Emmy Noether as:

"the most significant creative mathematical genius thus far produced since the higher education of women began."
"In the realm of algebra, ...she discovered methods which have proved of enormous importance in the development of the presentday younger generation of mathematicians"

Emmy Noether's legacy

For Women in Mathematics.

International Congresses of Mathematicians (ICM)
Emmy was first in many things.

- 1897 First ICM - Zurich
- 4 women out of 208 participants
- No women speakers

- 1932 ICM - again in Zurich
- Emmy Noether first woman to give a plenary lecture at an ICM
- 1990 ICM in Kyoto
- Karen Uhlenbeck second woman ICM plenary speaker
- 58 years later!

Women in Mathematics Associations

Before the 1990 ICM

Associations for women in mathematics formed:
1971 Association for Women in Mathematics AWM

- (in the US) - with men and women as members

1980 AWM initiated: Emmy Noether Lecture

- "to honour women who have made fundamental and sustained contributions to the mathematical sciences"
- Annually at Joint Mathematics meeting in January
- 2013: AWM-AMS Noether lectures [co-sponsored by American Math Soc]

ICM Emmy Noether Lecture

Additional AWM Emmy Noether lectures

- 1994 Organised by AWM - presented at ICM [each four years]
- 2002 International Mathematical Union: General Assembly
- agreed to formalize the ICM Emmy Noether Lecture
- for following two ICMs
- 2010 International Mathematical Union: General Assembly
- established ICM Emmy Noether Lecture on-going

Women and the International Mathematical Union (IMU)

1951 IMU established

IMU Executive Committee

- (now) 11 persons - President, 2 VPs, 6 Members-at-Large and immediate past President - 4 year terms
- 2003-2006 First time a woman on the IMU EC:
- Ragni Piene (Norway)
- Ragni chaired Emmy Noether Committee for 2006
- Members at large
- May serve maximum of two terms
- Terms are four years

Women and the International Mathematical Union (IMU)

2007-2010 First time two women on IMU EC

- Ragni and Cheryl Praeger
- Cheryl chaired second ICM Emmy Noether Committee - for 2010 ICM
- ICM Emmy Noether Lecture established by IMU GA 2010

Women and the International Mathematical Union (IMU)

20011-2014 First woman President of IMU

- Ingrid Daubechies

2014 Established IMU Committee

- Committee for Women in Mathematics CWM

And exceptionally

Women and the International Mathematical Union (IMU)

2014 International Congress of Mathematicians in Seoul
Only Woman to receive a Fields Medal - in more than 80 years!

- Awarded by the IMU at the ICM
- Up to four - every four years - for outstanding achievements by mathematicians under 40
- First FM awarded in 1936
- There's a long way to go

Emmy Noether: Trailblazer for Women in Mathematics

Thank you Emmy

